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The explosive growth of computing power, coupled with scientific and

technological emphasis on the national scale, has led to significant major

advances inoperational numerical weather prediction (NWP) during the last two

decades. There are about half a dozen major centers around the world running

global NWP models operationally. Many more countries have operational
hemispheric or limited-area models which provide weather forecasts. The

global models typically have several hundred kilometer resolution, while the

limited-area models usually have horizontal spacing of 50 to 100 km. Given

the pace of burgeoning growth in this area, it seems warranted to occasionally
take an overview of aspects of the field common to all modelers. In this note

I take a brief look at the nature of subgrid scale turbulence transport

parameterization, and some of the difficulties pertaining thereto, with
particular emphasis on operational NWP models.

The Navier-Stokes equations describe the physics of atmospheric flow,

and one might expect that it would be possible to numerically solve these
equations in such a way as to yield near perfect depiction of all details of

the flow, and hence, near perfect forecasts. It would be simply a matter of

resolving all elements of the flow which have a significant impact on its
evolution. While such direct simulations are possible for low Reynolds number

flows, it can be demonstrated [1] that because of the wide range of scales of

turbulent motion that are coupled nonlinearly, it would take roughly 1020 grid
points to directly compute the flow over a region 10 km on a side. This is

clearly beyond the capability of any dimly envisioned future computer.

Instead of trying to resolve all important eddy scales, one necessarily

must address a less ambitious goal of forecasting the evolution of averaged
values of the meteorological relevant quantities. Typically in operational

NWP models, this means forecasting the value of a variable within a grid
volume that may be 100 km on a side horizontally, and 50 to 100 mb thick
vertically. Clearly, this grid will not have sufficient resolution to

describe many interesting phenomena. A powerful thunderstorm having a
horizontal scale of 10 km will not be resolved by this grid, nor will the
details of a sea breeze, or clear-alr turbulence, etc. But if the model

cannot resolve these phenomena, and if we are only attempting to define
averages on quite a large scale, do we really have to concern ourselves with

such subgrid scale processes? The answer is a definite yes. These features

of the turbulent flow, even though they be subgrid to our model, still
interact in a complex, nonlinear manner with flow on the resolved scale. Thus

we are led to the problem of parameterization, which in essence is the science

(and to some degree, art) of properly representing subgrid scale influences on
the model's resolvable scale variables.

There exists considerable diversity in the techniques used for
parameterizing transport processes within NWP models. The earliest form of
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transport parameterization used in NWPmodels involved eddy-coefficient or
K-theory. In K-theory the subgrid fluxes which one wishes to parameterize are
assumed to be proportional to the local gradient of the relevant mean
quantity. The proportionality factor is the eddy coefficient, K. The problem
thus shifts from one of specifying unknown subgrid scale fluxes to that of
defining "proper" eddy coefficients for the flow. In early treatments, the
eddy coefficients generally were selected a priori according to some

analytical function. Thus, to some extent one was determining the answer

before beginning the integration. Current K-theory models often use eddy

coefficients which depend in some manner on the stability of the flow (through
deformation and buoyancy, or a bulk Richardson number, for example). Thus,

the magnitude of K varies in time and space in a manner dependent on the
evolution of the flow variables--a very desirable feature. Some weaknesses in

K-theory, however, have led to the development of alternative approaches to

transport modeling. For example, in convective situations where large eddies

fill the atmospheric boundary layer (ABL) and are responsible for a

significant fraction of the transport, the fluxes are not strongly related to
the immediate local gradient. In fact, these eddies may transport heat

counter to the local temperature gradient, which would imply nonphysical,

negative eddy coefficients.

One of the alternate approaches to modeling transport processes within

the atmospheric boundary layer takes advantage of the observation that often
under convective situations the wind, potential temperature, and specific

humidity are nearly constant with height from near the surface to near the

boundary layer top--that is, these quantities are well-mixed within the

convective ABL. Given such conditions, it is unnecessary to have many grid

points in the vertical resolving the profiles, since their values within the

mixed-layer can be defined by single mean values. It is, however, necessary

to carefully define the fluxes at the top and base of the mixed-layer since

these fluxes will determine how the mean values within the mixed-layer change

with time. Since one does not have multiple grid points near the top of the

ABL to help compute the entrainment flux in this type of complex, this is

particularly true when the boundary layer contains clouds, because the
presence of clouds has a major impact on turbulence, hence entrainment at ABL

top. Thus, although initially attractive because of their apparent

simplicity, the mixed-layer formulations can become complex and require

considerable ingenuity to define entrainment fluxes in situations more

complicated than the clear, convective ABL.

In R&D applications, second-order closure modeling has been widely used

for parameterizing the transports due to turbulence. Second-order models,

like K-theory models, require numerous grid points for their

computations--making no a priori assumptions concerning the degree to which
the ABL is well mixed. Unlike K-theory models, however, the fluxes are not

assumed directly proportional to local mean gradients. Instead, dynamic

equations for the fluxes are developed and added to the collection of model

equations to be numerically integrated. A multiplicity of terms requiring

closure arises from these new equations, and fundamental work in this area

centers on improving and generalizing the closure expressions.
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While the second-order models often permit greater realism in their
description of ABL processes, a significant price must be paid in model
complexity and computer time. (In a recent third-order closure calculation,
Bougeault [2] was required to integrate 50 differential equations--this being
feasible only because it was a one-dimensional model.) Currently, only
substantial simplification will permit second-order modeling techniques to be
incorporated into operational NWPmodels. It is possible, for example, to
include a length scale equation and the turbulent kinetic energy equation in a
NWPmodel to help in defining a generalized eddy coefficient, without carrying
all of the second-momentdifferential equations.

Thus, the necessity for an operational NWPmodel to represent the
atmosphere on a horizontal scale of many hundreds or even thousands of
kilometers meansthat resolution of turbulence transport with the samedetail
as practiced is current R&Dboundary layer models is impractical. However,
transport parameterization in these NWPmodels, while necessarily somewhat
crude, is still of great importance to the success of their forecasts. The
important question here then becomesthis:

How do we take the advances being made in turbulence modeling
research with high-resolution models, and with observation
programs that focus on the details of local ABL turbulence, and
use them to the best advantage in developing the physical
parameterizations required in coarser-scale NWPmodels?

It clearly requires more than "scaling-up" the closure assumptions used
on the fine scale to the larger scale. For example, a transport
parameterization used for describing turbulent fluxes in a detiled cloud model
cannot be expected to also represent the situation when towering cumulus,
embedded in an otherwise nearly laminar troposphere above the ABL, become
entirely subgrid to the model. And, indeed, entirely different
phenomenological approaches have been developed for representing cumulus
effects in synoptic scale models. But where are the bounds defining the types
of transport schemeappropriate to a given model simulation? Or_ to pose the

problem slightly differently_ if we beqin with a fine-resolution

three-dimensional model and gradually increase the grid spacing in successive

simulations of the same situation_ how should we gradually alter the

parameterization alqorithms so as to continuously represent the flow in a
realistic manner at each scale? The demand for increased skill in

sub-synoptic and mesoscale NWP models requires that such questions be
addressed in a serious, extensive manner.

References

1. Wyngaard, J.: Boundary-Layer Modeling in Atmospheric Turbulence and Air

Pollution Modeling (Nieuwstadt, F. T. M.; and Van Dop, H., eds.), pp.
69-107, 1982.

2. Bougeault, P.: The Diurnal Cycle of the Marine Stratocumulus Layer: A

Higher-Order Model Study, Journal of the Atmospheric Sciences,
42:2826-2843, 1986.

157



QUESTION:WarrenCampbell (BDMCorporation). Howdo you calibrate the models
that you use? Ordinarily whenyou start doing model equations you end up with
a group of parameters and then you have to come up with solutions to those
parameters. Howdo you go about actually making comparison with what's going
on in the atmosphere in making those calibrations?

ANSWER:As far as the second-order closure models, most of that kind of thing
is done first by using model calculations of laboratory flows to set the model
constants. I have been working with the various versions of the Mellor and
Yamadaformulation, and they have a hierarchy of different order closure
models. If you look at how they got the closure constants that are used, it
traces back to laboratory flow simulations. So you don't have to change them
for every newmeteorological condition you are dealing with, which is a nice
feature.
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